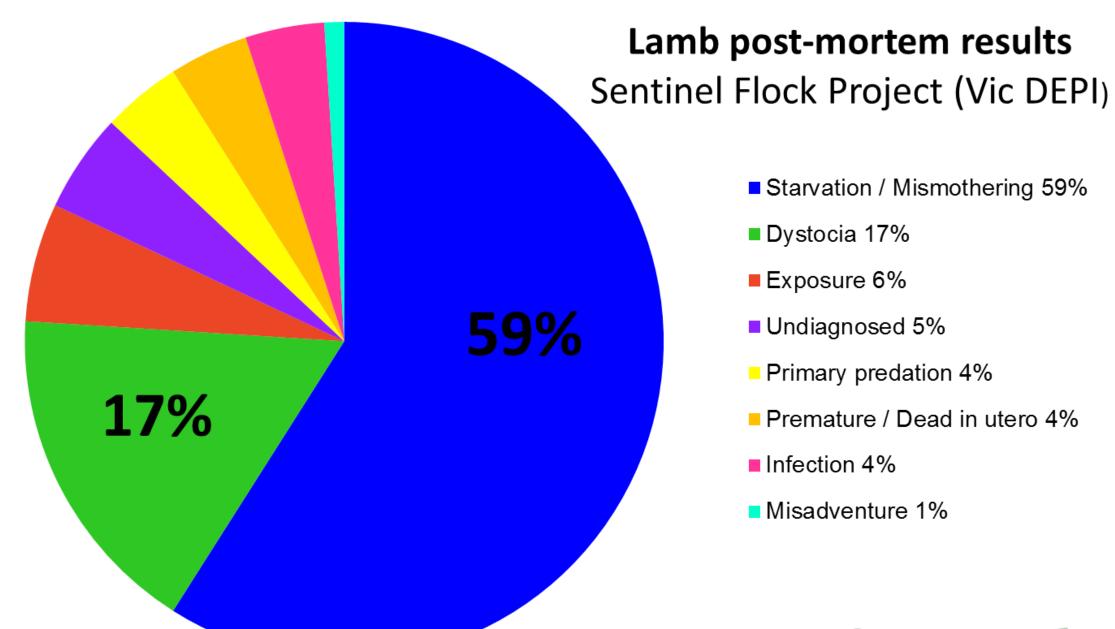
Making More From Sheep

Improving lamb survival by reducing mob size at lambing

Dr Jason Trompf



Outline

- Tools for increasing lamb survival
- National lambing density project
 - On-farm research
 - Producer data
 - Economics & putting it into practice
 - Key messages

Miss-mothering in Action!

250 → 125 ewes @ 14.4 DSE/ha =

+\$2.5/twin Merino ewe & +\$3.5/twin maternal ewe

Pasture utilisation +\$50-100/ha per 10% increase

Shelter for twin ewes +\$1.25-3/ewe

+\$1.25/ewe or +\$4/twin ewe

Pregnancy scan for multiples

+\$0.8/ewe

(Young et al. 2014, 2016)

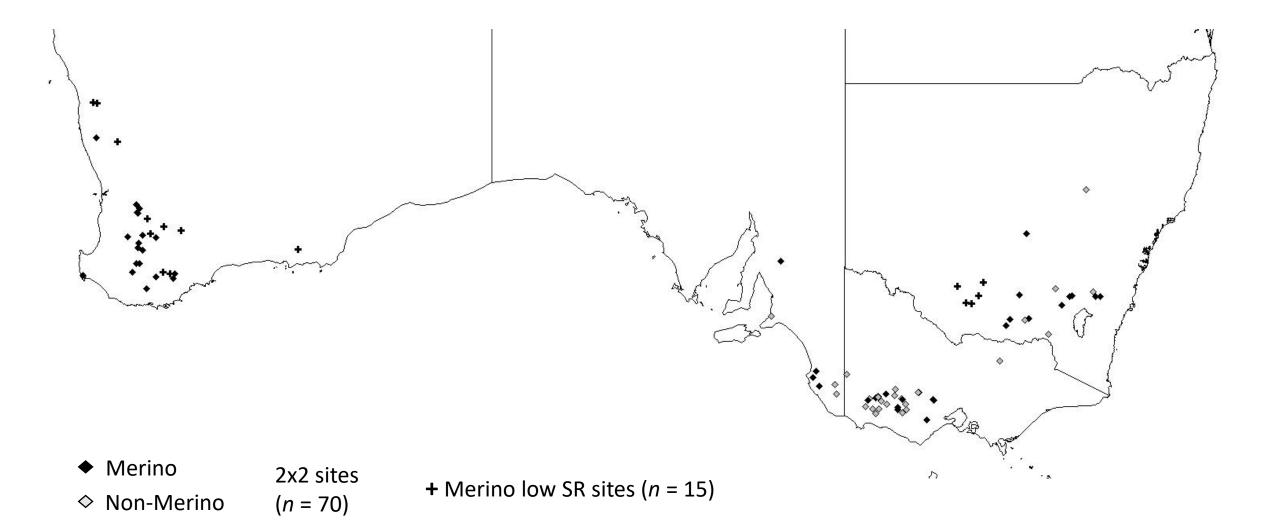
Improving lamb survival – building the pyramid

- 1.4% and 3.5% decrease in survival of singles and twins per +100 ewes
- 0.7% decrease in survival per +1 ewe/ha

Current recommendation for adult twin-bearing ewes

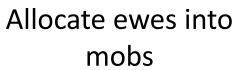
Mob size of twin-bearing ewes	100	250
Difference in lamb survival (%)	5.25	
Difference in marking rate (%)	10.5	

National lambing density project


- On-farm research survival of twins
 - 70 research sites to investigate the effects of mob size and stocking rate
 - 15 research sites to investigate the effect of mob size when ewes lamb at low stocking rates

Producer survey data

On-farm research sites

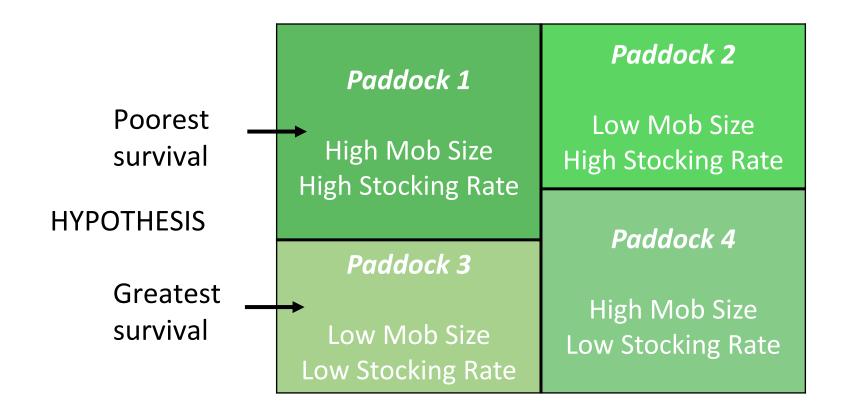

On-farm research sites

Day 140 from rams in

Lamb marking

Condition score

Assess pasture (FOO, Quality etc)


Count lambs

- Paddock characteristics
- Weather data

Adult, twin-bearing Merino or Non-Merino ewes

Mob size				
		Average	Range	
Merino	High	242	189 – 432	
	Low	98	70 – 261	
Non-Merino	High	243	188 – 510	
	Low	97	70 – 210	

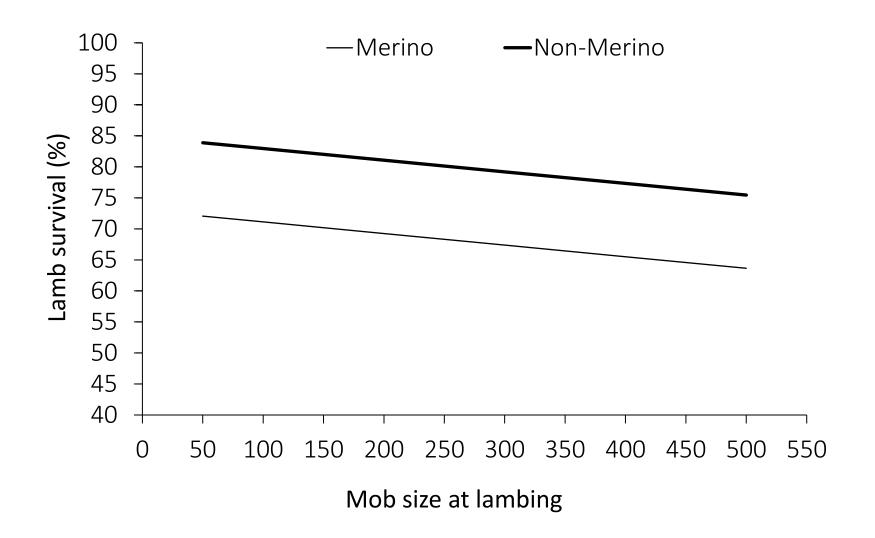
		Mob size		Stocking rat	te (ewes/ha)
		Average	Range	Average	Range
Merino	High	242	189 – 432	7.3	3.9 – 12.2
	Low	98	70 – 261	4.8	1.7 – 10.0
Non-Merino	High	243	188 – 510	8.1	5.0 – 11.2
	Low	97	70 – 210	5.9	3.1 – 8.1

Merino					
	Average	Range			
CS at lambing	3.1	2.4 - 3.9			
FOO at lambing (kg DM/ha)	1530	120 – 4180			
Shelter availability (% of paddock)	17	0 – 80			

	Me	erino	Non-Merino		
	Average Range		Average	Range	
CS at lambing	3.1	2.4 – 3.9	3.2	2.5 – 3.8	
FOO at lambing (kg DM/ha)	1530	120 – 4180	1720	680 – 3440	
Shelter availability (% of paddock)	17	0 – 80	7	0 – 30	

- Lamb survival 2.5% greater at lower mob sizes
- No effect of stocking rate (SR) or relationship between mob size & SR

	High mob	High mob	Low mob	Low mob
	size + High	size + Low	size + High	size + Low
	SR	SR	SR	SR
Merino	68.2%	68.9%	71.0%	71.1%


- Lamb survival 2.5% greater at lower mob sizes
- No effect of stocking rate (SR) or relationship between mob size & SR

	High mob	High mob	Low mob	Low mob
	size + High	size + Low	size + High	size + Low
	SR	SR	SR	SR
Merino	68.2%	68.9%	71.0%	71.1%
Non-Merino	80.2%	80.9%	83.0%	83.1%

Reduce mob size by 100 = 2% increase twin lamb survival

On-farm research sites- Mob size at low SR

Adult, twin-bearing Merino ewes lambing at high vs low mob size

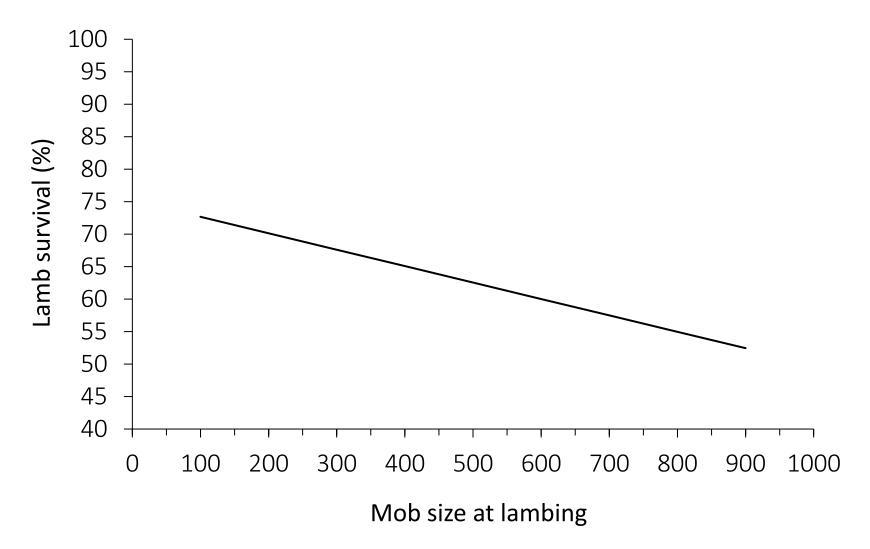
State	High mob size		Low mob size		Stocking rate (ewes/ha)
Ciaio	Average	Range	Average	Range	Range
NSW	763	639 – 976	435	338 – 554	0.3 – 1

On-farm research sites- Mob size at low SR

Adult, twin-bearing Merino ewes lambing at high vs low mob size

State	High m	High mob size		ob size	Stocking rate (ewes/ha)
Otato	Average	Range	Average	Range	Range
NSW	763	639 – 976	435	338 – 554	0.3 – 1
WA	299	255 – 340	117	93 – 190	1 – 3.8

On-farm research sites- Mob size at low SR


• Survival of twin-born Merino lambs greater at lower mob sizes

	High mob size	Low mob size
NIC\A/	60.2%	70.9%
NSW	(763)	(435)
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	62.8%	66.1%
WA	(299)	(117)

Reduce mob size by 100 = 2.5% increase twin lamb survival

On-farm research sites- Key findings

- Mob size by 100 twin-bearing ewes =
- No relationship with;
 - Stocking rate (0.5 12 ewes/ha)
 - Merino or non-Merino ewe breed
 - Ewe condition score at lambing (2.4 3.8)
 - FOO at lambing
 - Paddock characteristics

2 – 2.5% lamb survival

Putting it all together

♦ Mob size at lambing by 100 ewes = **↑** 2.25% survival of twins

Consistent effect across Merino and non-Merino breeds

- Potential for increased benefits when lambing in autumn or when seasonal conditions are poor
- + Reducing paddock size increases pasture utilisation

Factors affecting the optimum mob size

- Cost of fencing and requirement for water ($\sqrt{\cos t} = \sqrt{\text{mob size}}$)
- Stocking rate (\uparrow SR = \downarrow mob size)
- Pregnancy status (optimum mob size for twins is 40-50% that for singles)
- Target Return On Investment (↑ROI = ↑mob size)
- Breed and lamb price (maternal twins & \uparrow \$lamb = \downarrow mob size, but smaller effect)
- Capitalising on improved pasture utilisation (↓mob size)

Optimum mob size- +/- pasture utilisation

			Without pasture utilisation		With pasture utilisation	
	DSE/ha	Fence type	Twin	Single	Twin	Single
	14.4	Permanent	77	163	47	66
MERINO	14.4	Temporary + water	52	107		
	14.4	Temporary, no water	23	53		
	14.4	Permanent	66	165	41	59
NON-MERINO	14.4	Temporary + water	45	109		
	14.4	Temporary, no water	19	54		

Optimum mob size- varying Return on Investment

			5% ROI		50% ROI	
	DSE/ha	Fence type	Twin	Single	Twin	Single
	14.4	Permanent	77	163	213	453
MERINO	14.4	Temporary + water	52	107	140	300
	14.4	Temporary, no water	23	53	70	170
	14.4	Permanent	66	165	183	458
NON-MERINO	14.4	Temporary + water	45	109	123	305
	14.4	Temporary, no water	19	54	60	173

Putting it into practice

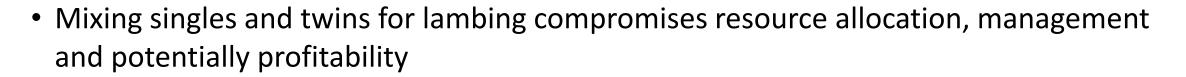
• Scenario;

- 250 → 125 twin-bearing ewes @ 14.4 DSE/ha
- Lamb at \$6/kg
- Subdivide with a permanent fence + supply water, including benefits of pasture utilisation

Additional income

- Merinos = \$87/ha = \$10.9/twin ewe
- Non-Merinos = \$107/ha = \$13.4/twin ewe

• Investment


- Merinos = \$8650 (\$277/ha) = ROI 31% = fencing paid off in 4 years
- Non-Merinos = \$8390 (\$268/ha) = ROI 40% = fencing paid off in 3 years

Putting it into practice

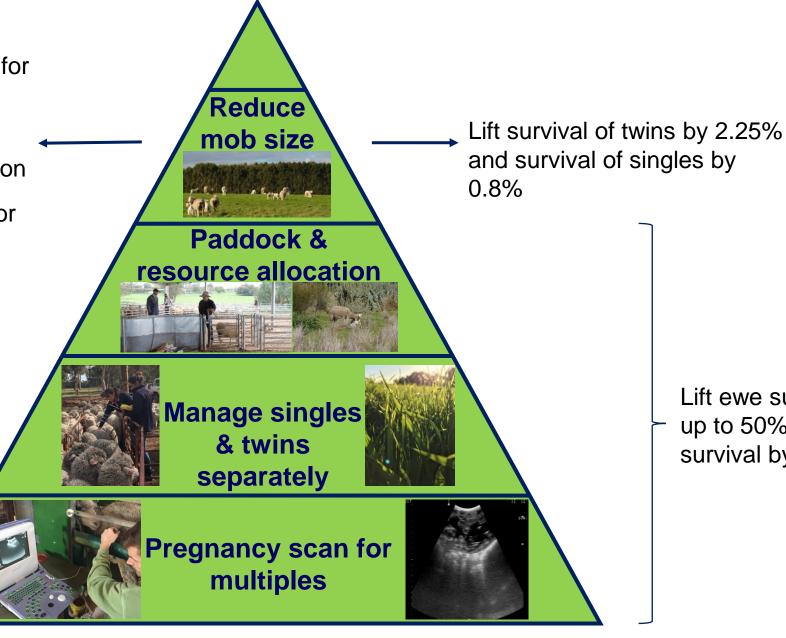
- Greater returns from subdividing larger mobs
- Prioritise smaller paddocks for twins
- Fencing permanent or temporary (± water)
- Reallocation of mobs to existing paddocks
 - Up to \$0.34/Merino ewe (scanning 120%)
 - Up to \$0.7/non-Merino ewe (scanning 150%)

Lamb marking is your yield mapping day

- Mark mobs in lambing mobs (don't box up)
- Collect good data (count all lambs and ewes)
- > Record marking result against each paddock
- Identify lambs born as singles and twins (using either a numbered tag or ear notch)
- > Wet-dry ewes every year (identify dry ewes)

Effect of reducing mob size at lambing by 100 ewes

Experiment	Singles	Twins
On-farm 2x2 sites	-	2%
On-farm mob size at low SR	-	2.5%
National survey	0.3%	1.1%
BWBL survey	1.4%	3.5%
Overall average	0.8%	2.25%


Putting it into action:

Prioritise small paddocks for twins

Capitalise on benefits of increased pasture utilisation

Subdivision of paddocks or reallocation of mobs

Lift ewe survival by up to 50% and lamb survival by 10% +

