

Wean More Lambs

John Webb Ware Mackinnon Project University of Melbourne

The most profitable systems

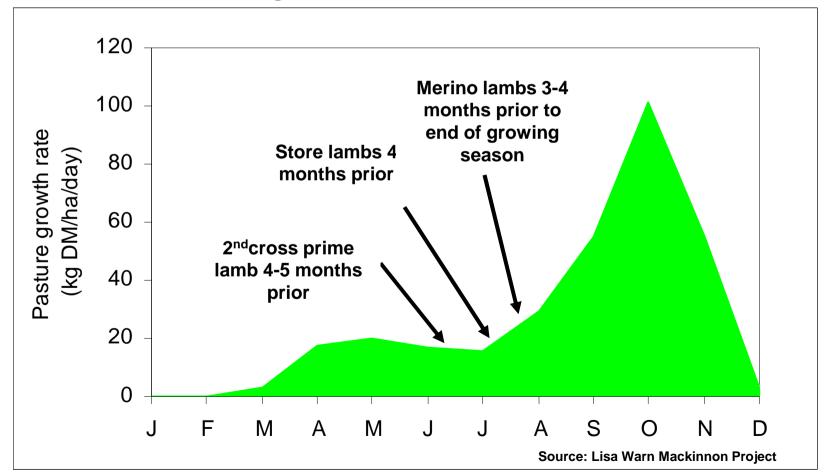
- Match feed supply and feed demand
- Allow higher stocking rates but minimise supplementary feeding
- Focus on profit drivers
 - Meat and wool per hectare not just price premiums

Management first!

Stocking rate is most important

- Benefit of increasing lambing % greatest if understocked
- If fully stocked may need to reduce number of sheep run

Management system is a combination of factors


- Balance number of ewes per ha
- Reproductive rate
- Lamb growth rate
- Sale prices
- Age structure

AWI Australian Wool

Time of lambing

Issues to consider when increasing reproductive performance

- Management skill and risk
- Investment timeframe
- Penalties of increasing fertility
 - -Lower lamb wt
 - -Wool production
 - Metabolic issues
- Alternative use of funds
 - Stock, pasture, fertiliser.....

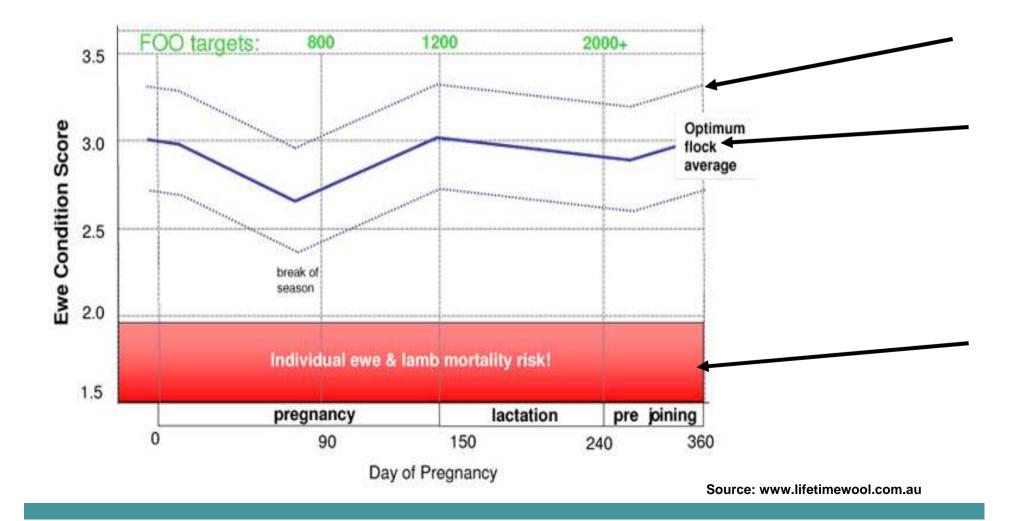
Making More From Sheep

Opportunity: Lifetime reproductive performance

Component of reproduction	Ewes ranked on lifetime reproduction rate				
	Lowest 25%	2 nd quartile	3 rd quartile	Highest 25%	
Ewe fertility	55%	78%	88%	95%	
Litter size	1.28	1.34	1.42	1.64	
Lamb survival	47%	74%	83 %	90%	
Lambs weaned per ewe joined		0.72	1.00	1.39	

Source: Chris Shands NSW PI

- Highest 25%
- 400 kg lw/ha
- Lowest 25%
- 104 kg lw/ha

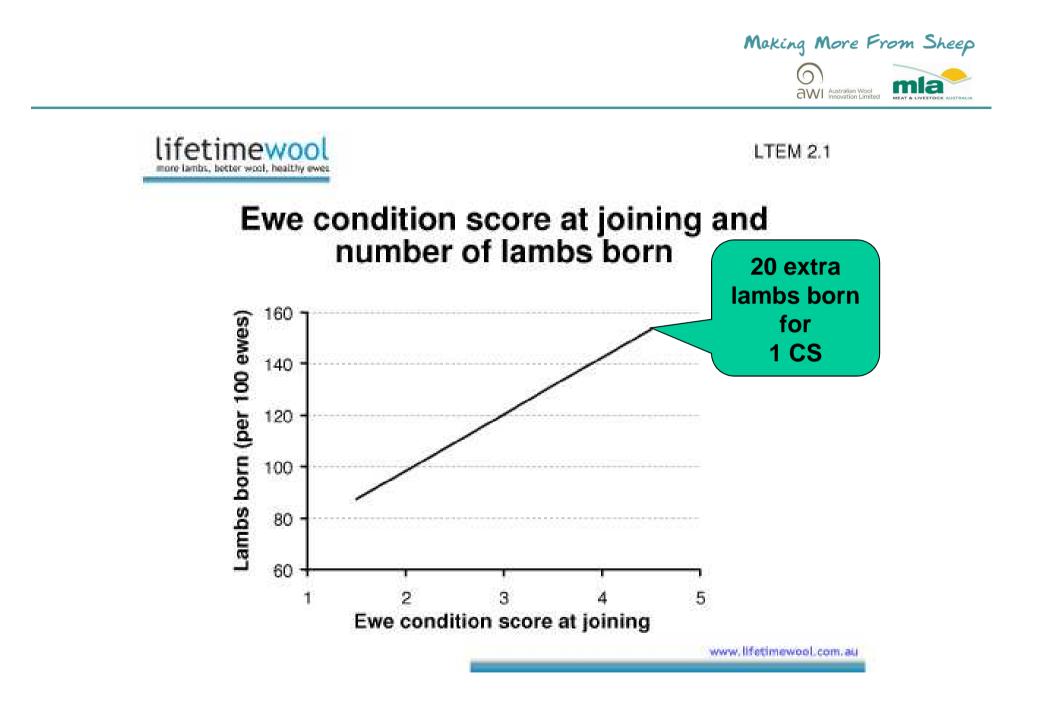

What can you do to wean more lambs?

- Improve pregnancy rates ✓
- Improve conception rates ✓
- Reduce foetal loss?
- Improve lamb survival ✓
- Increase weaner survival ✓

Nutrition – Management starts at weaning!

Improving conception rates

All about nutrition


- "Static" ewe body weight
- "Dynamic" short term flushing

Genetics

- -Breed & genotype
- Time of mating

Manipulation of reproduction

Variable response of reproduction rate (foetus/100 ewes) to ewe condition score at different locations

Location	Low CS <2.7	High CS >3.3	Extra foetuses
Skipton	112	164	+52
Ararat	124	149	+25
Edenhope	78	106	+28
Edenhope	110	130	+20
Ararat	132	147	+15
Dunkeld	92	103	+11

Source: www.lifetimewool.com.au

• Differences due to genetics and environment

Ewe nutrition

- To prevent 1 kg wt loss ~ 3 kg grain
- To increase 1 kg bodyweight ~ 7 kg grain
- Response to ewe body weight at joining
 - 1 kg ewe weight change = CR by 2.5% (1.5% live lambs)
- Response to ewe body weight at lambing
 - 1 kg ewe weight change = 1.1% singles 1.6% twins

Making More From Sheep

Feeding to maintain weight will pay Feeding to increase weight will not pay

Management	Margin/ 100 ewes	Return on investment
Maintain 1 kg LW at joining	\$43.50	73%
Increase 1 kg LW at joining	-\$24.50	-ve
Maintain 1 kg LW in pregnancy	\$23.50	42%
Increase 1 kg LW in pregnancy	-\$44.50	-ve

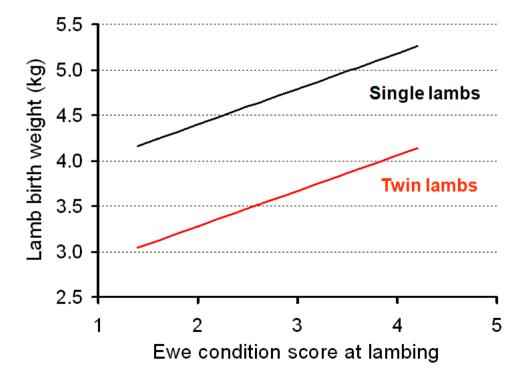
Source: Mackinnon Project

Flushing

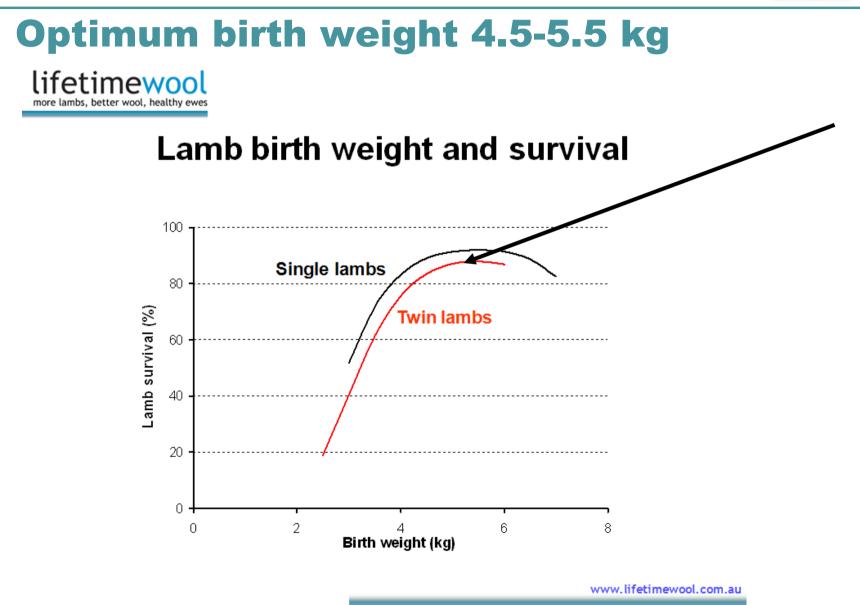
- Highly variable response (-ve to +50%)
- Quality green feed
 - -3 weeks in period prior to mating

OR

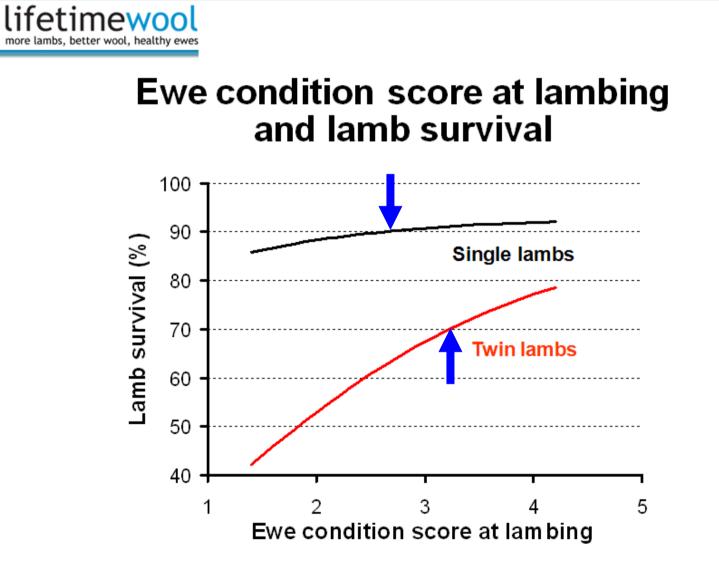
High protein (Lupins 0.5kg/day for 6 days)


Use common sense

1 Condition score in ewes ~ 0.5 kg birth weight


lifetime wool, healthy ewes

Ewes in better condition at lambing have heavier lambs



www.lifetimewool.com.au

www.lifetimewool.com.au

Increasing lamb survival within 48 hours of birth

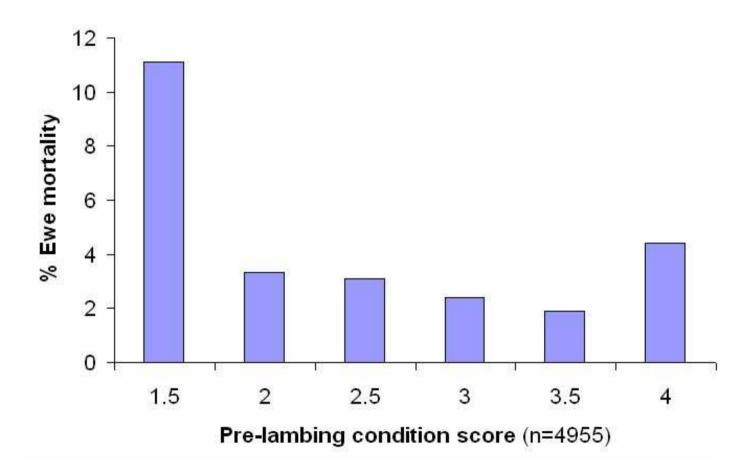
- Most losses due to starvation, mismothering, hypothermia
- Predation generally less than 10% of total
- Dystocia can be important
- Aim for
 - -90% survival of singles
 - -70% survival of twins

Managing ewes during pregnancy

Set condition score targets and monitor

- Single bearing ewes CS 2.8-3.0 at lambing
- Twin bearing ewes CS 3.0-3.3 at lambing

Allocate appropriate pasture and monitor


- Single bearing ewes FOO 800 kg DM/ha day 90
- Single bearing ewes FOO 1200 kg DM/ha at lambing
- Twin bearing ewes FOO 1800 kg DM/ha at lambing

High risk ewes

- Singles ewes < CS 2.0 or > CS 4.0 @ lambing
- Twin ewes < CS 2.5 @ lambing

Light and heavy ewes at risk

Source: www.lifetimewool.com.au

If scanning - Use the information!

- Dry ewes: rejoin?, sell or retain
- Retain best performers for longer and run less maidens – depends on flock structure
- Manage twin lambing ewes separately!

Manage twin lambing ewes separately

- Allocate feed resources
- Mob size: < 250/mob smaller better
- Predation control
- Shelter
 - Twins 8.5% and singles 3.5% increase in survival
 - Benefit exists for 10 times the height from plantation
 - Avoid high risk paddocks

After lambing

 Short lambing period (35 days) is essential for effective management

Weaning time

- -12-14 weeks for merinos ALWAYS
- Crossbreds depends on allocation of feed resources
- Early weaning locks in high conception rates next year
- Weaner management
 - -Weaning paddocks
 - Merino weaners that grow over 1 kg/month survive

Sign Posts

- Making More From Sheep
 Module 10 Wean More Lambs
- Websites
 - -MLA, Lifetimewool, Evergraze, AWI, Sheep CRC

Sign Posts

- High performance weaner workshops
- Lifetime ewe management workshops
 - Improve ewe reproductive performance and profitability
 - Six sessions: small groups (5) on farm
 - Hands on training to improve skills; condition scoring, pasture assessment and managing ewes
- Managing scanned ewe workshops
- Using eID for sheep management and breeding
- Contact RIST/Sheep CRC for more information

Summary

- Get the enterprise and management system right

 Then improve reproductive performance
- Know nutritional targets and monitor
 Pasture availability and Condition Score targets
- Allocate resources to twins and singles
- Most important decisions require management and minimal extra investment